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SUMMARY 
A moving finite element algorithm has been compared against the upwind-differencing and Smolarkiewicz 
methods for the population balance equation of multicomponent particle growth processes. Analytical 
solutions and an error function have been used to test the numerical methods. The moving finite elements 
technique is much more accurate than other methods for a wide range of parameters. Since this method uses 
moving grids, it is able to model very narrow particle size distributions. It is also shown that the method can 
be extended to solve condensational growth problems which include particle curvature and non-continuum 
mass transfer effects. 

KEY WORDS Moving finite element method Population balance equation Particle growth First-order hyperbolic 
partial differential equation 

INTRODUCTION 

Continuous transport equations together with constitutive models of material behaviour are 
commonly used in engineering for fluid flows, heat and mass transfer equations apply to materials 
of continuous phase. However, dispersed multiphase systems abound in nature and in numerous 
engineering processes. Clouds in the atmosphere, crystals in crystallizers, precipitates and 
aerosols in colloidal systems, liquid droplets in liquid-liquid extraction systems, fluidized 
particles, coarsening particles in alloys, and microbial cell populations are common examples, to 
name just a few. Depending on each individual process, the particulate phase may be a pure 
substance or a multicomponent mixture. The pupulations balance equations is often required to 
model the formation, growth and shrinkage of the particulate phase. The dynamic behaviour of 
the particulates may be described by the number density function, which depends on properties 
space (e.g. particle size and composition) and physical space ((x, y ,  z )  co-ordinates in spatially 
inhomogeneous systems). A review on the use of the population balance equation in numerous 
dispersed multiphase systems can be found in Reference 1. 

In this work we are interested in the dynamic behaviour of the particulate phase and we only 
consider spatially homogeneous systems. Extension to spatially inhomogeneous systems can be 
achieved through the operator-splitting scheme as shown by Tsang and Brock.’ Among numer- 
ous dispersed multiphase systems, we further restrict ourselves to aerosol systems. However, the 
numerical methods discussed below can be used for other particulate processes. Particles grow by 
coagulation and by condensation of the transferable species from the continuous phase to the 
particulate phase. When particles grow by condensation, the size distribution approaches 
monodispersity and the number density function has extremely large gradients. Most numerical 
methods create either excessive numerical diffusion or severe spurious oscillations. The objective 
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of this work is to demonstrate that a moving finite element method can provide accurate 
numerical solutions to condensational growth of multicomponent particles. 

PROBLEM STATEMENT 

Subsequent to their appearance by homogeneous nucleation, particles grow by coagulation and 
condensation processes. If the coagulation process is much slower than the condensation process, 
coagulation can be neglected. Brock3 showed that Brownian coagulation is insignificant for 
particles with mean diameter greater than 0.1 pm. 

For multicomponent systems the population balance equation of particle growth by condensa- 
tion is 

an d -+ 1 -(t+bin)=O. 
d t  i = l  ami 

Here { . . . i {n ( rn , ,  m2,  . . . , m N ,  t)drn,dm, . . . dm, is the number of particles with masses in the 
range of m ,  and m ,  +dm,, m2 and m2+dm2,  . . . , m N  and m,+dm,, where N is he number of 
condensing species in the aerosol system. Multicomponent systems are commonly found in 
atmospheric aerosols and aerosols generated in chemical reacting systems. The latter is of 
particular interest because of its potential in the production of multicomponent fine particles of 
ceramic and semiconducting materials. Equation (1) finds common applications in crystallization, 
precipitation and particle growth processes in alloy and aerosol systems. 

In equation (l), t+bi is the particle growth rate for the ith component and mi is the mass of the ith 
component in a particle. For a dilute vapour-gas mixture the growth rate can be expressed by the 
Maxwell equation4 

t+bi=2nDidp(Ci, - CirP), ( 2 )  
where D, is the vapour diffusivity of the ith component, d ,  is the particle diameter, which relates to 
the total mass of a particle through the liquid density, and Ci, and CirP are the vapour 
concentration of the ith component in the gas phase and at  the particle surface respectively. The 
vapour concentration at the particle surface is related to the vapour pressure P,", of pure ith 
component through the generalized Kelvin equation 

where Ci, is the equilibrium concentration of the ith component over a planar surface of solution. 
C i , = P ~ , x , i G , / R T ,  where x i  and n?, are the mole fraction and molecular weight of the ith 
component respectively. R is the universal gas constant and T is the system temperature. In 
equation (3), y is the surface tension of the multicomponent droplet, ui is the particle molar volume 
of the ith component and K e ,  is the Kelvin number of the ith component. The generalized Kelvin 
equation (3) has been a subject of controversial debate in the past decade. However, the 
controversy was resolved recently by Mirabel and Reis$ and Wilemski.6 They proved that 
equation (3) is the correct generalized Kelvin equation. 

Equation (2) ,  the Maxwell equation, is the result of steady state solution of a simple diffusion 
problem. It is valid for particles with relatively large diameter or small Knudsen number 
Kn,  = 2Ai/d,, where A, is the mean free path of the ith component. For particles with K n ,  of the 
order of unity, the continuum Fick's diffusion law no longer applies. For particles with very small 
diameter, i.e. K n , +  1, the kinetic theory of gases applies. In the transition regime where 
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0.1 < Kn, d 10, no complete transport theory  exist^.^ To correct the particle growth process in the 
transition regime, the interpolation formula of Fuchs and Sutugin* is used. Recently, Ray et d9 
showed that it fitted the experimental data quite satisfactorily. Thus equations (2) and (3), with the 
inclusion of Fuchs and Sutugin’s interpolation formula f(Kni), are modified to 

$i = 2nDid,Ci,(Si-eXe1)f(Kni) (4) 
where S ,  = Ci,/Ci, is the saturation ratio of the ith component and 

The initial and boundary conditions for equation (1) are 

In equation (6), no is the initial size distribution. Here we use a log-normal distribution for no, 
although other size distributions can be used. Equation (7) implies that there is no large particle in 
the population. In practice, instead of equation (7), other satisfactory approximations can be used, 
as will be discussed later. 

Since the domain of interest in the particulate phase usually covers several orders of magnitude 
in particle diameter or about 10 orders of magnitude in particle mass, it is desirable to transform 
equation (1) into the following form ( J-space transformation by Middleton and Brock”). For the 
sake of clarity we consider binary systems. 

- 

wheref( J1, 32)=cr2nimin(m1, m2), mi=mioea(Ji-”,  $i=$i/orm, and T = t ;  mio is the mass of the 
ith component in the smallest particle of the population and LY is a scaling parameter. Here we use 
a =  1, implying that 10 units of Ji value cover a decade of particle diameter. In the following we 
present a moving finite element method for equation (8). 

A MOVING FINITE ELEMENT METHOD 

Equation (8) applies to many particulate processes and is called the ‘equation of continuity’, 
seemingly because of its similarity with its counterpart in hydrodynamics. It is a first-order 
hyperbolic partial differential equation. Its numerical solution is a formidable job because most 
numerical methods suffer from either numerical diffusion or spurious oscillations. A high-order- 
accurate scheme such as the Galerkin finite element method is particularly susceptible to spurious 
oscillations since the size distribution narrows and approaches monodispersity during the 
particle growth process, thus creating extremely large values of a f / a  Ji. Low-order-accurate 
schemes such as upwind differencing do not create spurious oscillations but have an intolerable 
amount of numerical diffusion. In general, numerical methods using fixed grid systems cannot 
resolve the problem of large gradients generated during the particle growth period. Therefore, for 
single-component particle growth problems, Tsang and Brock‘ have used a moving finite 
element method based on the algorithm by Varoglu and Finn.” In modelling the dynamic 
approach to monodispersity, only 80 grid points were used. The grid points move with the 
condensation rate or the characteristic velocity to extremely narrow size range to provide high 
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resolution. The dimensionless grid intervel corresponds to the use of a numerical method with a 
fixed grid system of approximately 2300 grid points per decade of particle diameter! 

It should also be mentioned that the recent success of computational fluid dynamics is partially 
due to the use of mesh refinement, which can be achieved through mesh movement, mesh 
enriching or remeshing. Adaptive remeshing or enriching schemes are highly successful in 
modelling transport and shock  problem^.'^-'^ In this work we extend Varoglu and Finn's one- 
dimensional moving finite element method to multidimensional problems. Derivation of the 
algorithm follows closely Varoglu and Finn's approach. 

Iff be an approximation to the solution f (  J1, 52, z). Then the vanishing of the weighted 
residual with respect to a continuous function 4( J1, 52, z) defined on 

J 1 min Q J 1 Q Jl,,,, J2,in d 52 Q J2,,,, < ~2 

can be expressed as 

where t1 and Z~ are the nth and (n+ 1)th time levels. Integrating parts we have 

The problem is solved step by step in time using space-time finite elements. 
The distorted brick elements are transformed from the 51-52-7 global co-ordinate system to an 

r-s-t local co-ordinate system such that the trasformed element is a cube ( -  1 < r  d 1, - 1 ds d 1, 
- 1 < t d 1). The relationships for co-ordinate transformation are as follows: 

8 

Ji= 1 Ni Ji,, (1 1) 

z=+[(1-t)z1+(1+t)r2], (12) 

i= 1 

where Ji is either J1 or 52, N ,  denotes the shape functions and J i ,  are the nodal values of J i .  
For an eight-node brick element the shape functions are 

N ,  =$(l+r)( l -s)( l+t) ,  N = $ (1 + r)( 1 + s) ( 1 + t),  

N3=$(1-r)(l +s)(l+t), N4=$(1-r)(l-s)(l+t), 

N, =$(l +r)(l -s)(l - t ) ,  N6=$(1+r)(l+s)(l-t), 

N ,  =$(1 -r)(l +s)(l -t), N, =$ (1 - r)( 1 - s)( 1 - t) .  (13) 
The relation between the differential variables is expressed as 

d J l d J 2 d r =  I a(  a ( r , s , ~ ) ~ l d r d s d t = I J l d r d s d r ,  ~ i ,  52, 

where a( J l , J 2 ,  z)/a(r, s, t )  is the Jacobian of the transformation. Evaluating this Jacobian 
rigorously results in very involved expressions and the coefficient matrix for binary compounds 
has nine diagonals. The problem was simplified at this step in order to reduce both computing 
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time and storage. This simplification reduces the final solution for binary systems to a pentadia- 
gonal matrix without sacrificing much of the accuracy, as will be shown later. Similarly, the global 
element matrix for ternary systems can be reduced to a seven-diagonal matrix. The simplification 
was introduced by assuming that, in evaluating the Jacobian, an element in the 51-52 plane 
was treated as a rectangle rather than a quadrilateral. This implies that J l i j = J f i , j + l  and 
5 2 ,  = 52, + 1, j .  Therefore equation (1)) yields 

J 1 =a [ (1 - s)( 1 + t )  J 1yj + (1 + s)( 1 + t) J 1:; + (1 - s)( 1 - t )  J 1 :+ 1, j + (1 + s)( 1 - t) J l:::, j], (15) 

52 =a [ ( 1  - s)( 1 + r ) ]  521, + (1 + s)( 1 + I )  J27; + (1 - s)(l- F) 527, j +  1 + (1 + s)( 1 - I )  J 27,;: 1 1. (16) 

The Jacobian now simplifies to 

I J I = (k/32) { [(l - S) J l t +  (1 + S) J 1;; - (1 -s) J l?::, j - (1 + S) J I:+ 1, j] [( 1 -s) J2:j 

+ (1 + s) J2;; - (1 - s) J 27,;: 1 - (1 + s) 52;, j +  1 3 >, (17) 

where k = z 2 - z l  is the time step. 

form 
In the local co-ordinates the approximate solution over a typical element is a polynomial of the 

8 

i= 1 
f ( r ,  s, t)' c N i j j .  

The weighting function 4 in equation (9) is uniquely determined by its values at all the nodes 
Pyj ( i  = 1,2, . . . , I ,  j =  1,2, . . . , J ) and is linear along the sides of (he finite elements. For each 
node at a time level n it is define as 

1, k = i  and l = j ,  
0, otherwise. 

p ; )  = (19) 

Replacing 4( J1, J2, T )  by @'j)(i=2,3,  . . . , I-1, j = 2 , 3 ,  . . . ,J-l), (1-2)( 5-2) equations in the 
unknownsfl;' are obtained from equation (10) as follows: 

where subscripts min and max correspond to the minimum and maximum value respectively. 
The integral is approximated by 

where {ps}&l denotes the eight nodes of the brick element ŝ  and Y is an arbitrary function 
defined on S .  
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Using the Jacobian, evaluating each integral term in equation (20) and summing over each 
element without showing lengthy intermediate steps, we have the final result 
1 n + l  n +  1 Tii+ 1, j { [ k n z : ,  j -  ( J 1 :::, j - ~ 1 ~ +  1 ,  j)1(~2:::, j +  1 -J2i+ 1 ,  j -  1 I >  

+if:?:, j { [ - k p : ? : ,  j +  ( J ly?t,j-J 1;- 1. j)]( 521,'. j +  1 -Jzll ' ,  j- 1 )> 

+ + f y , ) :  1 { [kn,;: 1 - ( 527,;: 1 - J2:, j +  1 )I ( J 1 :::, j +  1 - Jl:::, j + 1 )> 
n +  1 +if:,;! 1 { [ - kn,;? 1 + ( J 27,;' 1 - J2:, j - 1 )I ( J 12z;, j - 1 - J 1  i - 1 ,  j - 1 } 

+ 2f;T 1 [( J l$:, j -J  1y;, j)( J2:,;: 1 -52:,)1 I ) ]  

+ + f : , j +  1 [( 522,): 1 -J2:, j +  I)( Jll- 1,  j +  1 -J12+ 1, j+ 1 ) 1  

-+ fy , j -  1 [( ~2:,)! 1 - 5 2 ; ,  j -  1)(  J 1 7 - 1 , j -  1-J1:+ 1 , j - l ) l  

- i f : , j + l  [ ( k ~ 2 , j + ~ ) ( J l : - l , j + l - J ' : + l , j + l ) I  

= Z f Y j  [( J I:+ 1 ,  j - J  12- 1, j ) (  52:. j +  1 -J2:, j- 1 1 1  

+if:,,-l [ ( k G ; , j - l ) (  5 1 1 - 1 , j - l - J 1 7 + 1 , j - 1 ) 1 .  (22) 

The above equation represents extensions of the one-dimensional problems formulated by 
Varoglu and Finn" and more recently by Blom et aZ.I6 In order to obtain a numerical solution 
for f n +  in equation (22), it is necessary to calculate the location of grid points at the n+ 1 
unknown time level (e.g. J 1 ;::, j ,  J221,', j+ etc.). Two equations are required 

where $1 and $2 are evaluated at the known time level. 52"" can be found from m i + '  by using 
the definition of the J-space transformation. Alternatively, the first equation may also be ued for 
52"" (in this case it becomes a completely Lagrangian approach for mesh movement). For 
simple forms of $ i  there are no significant differences in the numerical results for these two 
approaches. For case 3 (to be discussed later), both approaches to calculating 52"" will give 
stable numerical results. However, for realistic growth rates such as equations (4) and (5),  
calculations of mi+ according to equation (23) give stable and accurate results for case 4, whereas 
the completely Lagrangian approach suffers severe spurious oscillations near the regions of 
extremely large gradients. For compounds of different condensation rates the second equation 
implies that the grid point move in the J2-direction in proportion to their condensation rate. 
Component 1 is chosen to be the least volatile compound (e.g. smallest condensation rate) in the 
system equations (22)  and (23). Additional terms arising from nucleation, sedimentation and 
coagulation can be treated by a time-splitting scheme, as is done successfully by Tsang and 
Brock.' 

Equation (7) represents the formal boundary condition of equation (1). However, the numerical 
solution of equation (22)  requires the boundary conditions for f, j,fi'l,fi'J and f i j .  We find that 
accurate results can be obtained by using&=A,_,- andfij=fi- l , j .  Similarly, we assume thatjij and 
fi', are equal to their initial values. These procedures are admittedly ad hoc in nature, but it should 
be mentioned that only thefvalues within the first three rows or columns of the boundary are 
slightly affected. Furthermore, thesef-values are usually many orders of magnitude smaller than 
those around the mean diameter. For general transport problems in fluid flow, heat and mass 
transfer, special finite elements at the boundary must be devised.I2 
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RESULTS AND DISCUSSION 

In order to validate the moving finite element method described in the previous section, we use a 
simplified form of equation (2) for which we can obtain an analytical solution. The assumptions 
being used are as follows: (a) no Kelvin (curvature) effect, (b) negligible non-continuum effect on 
mass transfer, (c) ideal solution behaviour, (d) dilute vapour-gas mixture, (e) ideal mixing inside 
the liquid drops and (f) constant condensing vapour concentrations. Thus equation (2) can be 

written as $i=a,  x m j  ri is a function of the mole fraction of the ith 

component, a, and di being some numerical constants. A further simplification results when the 
second term is neglected, implying that the condensation rate is at the upper limit of the growth 
law. Tsang and RaoI7 compared the method of moments, upwind differencing and a moving 
finite element method for single-component growth problems and found that if a numerical 
method can model a fast growth process it will be able to model slower processes. However, the 
reverse is not true. This allows us to write $ i  as 

-di Ern, ( ( 

113 

$ i=a i  ( mj) . (24) 

For binary systems the analytical solution is 

[ (7 miO)””i~ (L?i)l]l12 
n(m,, m2, . . . , t ) = n ,  (T 

The initial size distribution is a log-normal size distribution of the form 

where M ,  is the total particle number concentration (cm-3), CJ is the standard deviation of the 
distribution, mi are the component masses and TFZ, is the mass of the ith component in the particle 
having the mean diameter in the distribution. 

The availability of analytical solutions greatly facilitates the assessment of numerical methods. 
We introduce the following error function as a measure of accuracy of numerical solutions: 

(27) 
J( c [ ( ~ n a l y t  - h u r n e r i c ) ~  5 1 i ~  52i12 

C L n a l y t A  J l i A  J2i 
lIEII= 

where the.f-values are the average values in the ith element. The summation was carried out over 
each element in the 51-52 space. fAJ l iAJ2 ,  represents the number concentration of the ith 
element. The denominator is used as a normalizing factor since the total number concentration of 
aerosol particles may range from 103 to 10” ~ m - ~ .  

In the following we first present three case studies for which we can compare our numerical 
results (MULFEMM) with analytical solutions. Numerical solutions from the positive definite 
methods of Smolarkiewicz’ * and upwind differencing are also included in this study because of 
the fact that upwind differencing and its variants are currently used in large-scale simulations of 
aerosol growth.”. ‘ ’ 7  2o Explicit time differencing and a time-splitting scheme are used for the 
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upwind-differencing method and the Smolarkiewicz method. For the latter method we did not 
include a correction for the divergent velocity field and we used two corrective iterations since 
more itcrations only led to slightly improved numerical solutions with a significant increase in 
computing time. 

Case I .  Slow growth process with equal condensation rates 

The initial size distribution is characterized by the initial number concentration of 
1-67 x lo6 ~ m - ~ ,  geometric standard deviation of 1.4 and mean particle diameter of 0.6 pm. 
The condensation coefficients a, in equation (24) are equal to lo-" g 2 I 3 s - ' .  Figure 1 shows 
the numerical results at 10s from the moving finite element method (MULFEMM), the 
Smolarkiewicz method and the upwind-differencing method. The ordinate and abcissa of the 
contour plots are the J-values for the two components. The diagrams on the left-hand side are top 
views of the size distribution while those on the right-hand side are 3D views from the south-east 
corner. The contour values on the left and the vertical scales on the right are logarithms of the 
number distribution functionf( J 1, J 2 ) .  The adjacent contour lines are 0.5 units apart. Contours 
with steep gradients (e.g. Figures l(a) and l(b) appear to be disconnected and incomplete. This is 
due to the limitations of the Surface-I1 plotting routine. It is obvious that the moving finite 
element method (MULFEMM) compares favourably with the analytical solution, whereas the 
Smolarkiewicz method and the upwind-differencing method suffer from intolerable numerical 
diffusion. Table I shows that the moving finite element method predicts the correct peak location 
and value of the size distribution. I t  also has the lowest value of the error function 11 E 11. M ,  and 
M I ,  the zeroth and first moments of the size distributionA which correspond to the number and 
mass concentration of the particles, are close to the analytical solution. The number con- 
ncentraions predicted by the Smolarkiewicz method and the upwind-differencing method are 
exact because the condensation process is number-conserving and both numerical schemes are 
number-conserving schemes. However, both methods predict incorrect size distributions. This 
pitfall points out that the use of moments of the size distribution as the only measure of accuracy 
is not sufficient. 

Case 2. Fast growth process with equal condensation rates 

The condensation coefficients are the same as those in case 1. However, the initial size 
distribution is characterized by the initial number concentration of 8.823 x lo6 ~ m - ~ ,  geometric 
standard deviation of 1.5 and mean particle diameter of 0.1 pm. Because of its smaller mean 

Table 1. Comparison of different numerical schemes with analytical solution for case 1 at time level of 10 s. Condensation 
coefficients a, = ~ ~ = 1 O - ' ~ g ~ ~ ~ s ~ ' ;  initial mean diameter 0 6 p m  

Grid 
spacing Time Peak location Peak JJEJJ x 10' M ,  x MI x 10' 

A J  step (s) J 1  5 2  value x (cm-j) (gcm-') 
~~ ~ 

MULFEMM 0.3 0.1 19.702 19.702 3,470 0.128 1.672 3,849 

Smolarkiewicz 0.3 0.1 19,600 19.600 2.212 8.388 1.670 3,828 

Upwind differencing 0.3 0.1 19600 19.600 1.00I 14.9 1.670 3.902 

Analytical solution 19.702 19,702 3.500 1.670 3.869 

(0.74 pm) 

(0.72 pm) 

(0.72 pm) 

(0.74 prn) 
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Figure 1. Comparison of (a) analytical solution, (b) MULFEMM, (c) Smolarkiewicz method and (d) upwind-differencing 
method for case 1 ,  which is a slow growth process with equal condensation rates; (e) is the initial size distribution 
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diameter, there is a rapid change in size distribution. Figure 2 shows the evolution of the size 
distribution and the grid system from MULFEMM. The initial size distribution and the grid 
system with grid spacing of 0.5 are shown in the bottom figures. The initial grid system is 32 x 32 
but the 3D plots on the right-hand side use 64 x 64 lines for better representation. As particles 
grow, the size distribution approaches monodispersity. At t =  10 s, particles are almost of the 
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Figure 2. MULFEMM's numerical solution and grid movement at two time levels for case 2, which is a fast growth 
process with equal condensation rates; the initial size distribution and grid system are shown a[ the bottom. 
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same size and extremely large gradients exist around the narrow size distribution. Notice that the 
grids are moved to where high resolution is required. Figure 3 compares the numerical solutions 
by MULFEMM and the analytical solutions at t =2.5 s and t = 10 s by magnifying the region in 
close proximity to the solution. The grid spacing in the areas where the steepest gradients are 
encountered has A J i = 0.005. A fixed grid system with such grid spacing using the Smolarkiewicz 
method or the upwind-differencing method would need some 3000 grid points in each direction. 
Figure 4 shows that, even at t = 2 5  s, the Smolarkiewicz method and the upwind-differencing 
method create excessive numerical diffusion. Table I1 shows grid spacing, time step size and the 
results by the different methods at the time level of 2.5 s. The Courant number stability criterion 
for the Smolarkiewicz method and the upwind-differencing method requires a maximum time 
step of 0.003 s for the grid spacing of 05.  The CPU times on an IBM 3090-300E computer for 
simulations up to the time level of 2.5 s are 2490 s for the upwind-differencing method, 3240 s for 
the Smolarkiewicz method and 1815 s for MULFEMM. The computational efficiency of MUL- 
FEMM is due to the fact that it can allow the use of a much larger time step. Another simulation 
using MULFEMM is conducted to illustrate its ability to use unequal grid spacing to improve 

Analytical solution MULFEMM 

Figure 3. Comparison of MULFEMM’s numerical solution with the analytical solution for case 2 
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Figure 4. Comparison of (a) analytical solution, (b) MULFEMM, (c) Smolarkiewicz method and (d) upwind-differencing 
method for case 2 at 2.5 s 

the result while retaining the same total number of grid points. Initially, a grid spacing of 0.25 is 
used to model the cone of the initial distribution while the grid spacing elsewhere is increased to 
0.75. The improvement obtained in the solution is about 10% with regard to the peak value, and 
the error decreases by a factor of three (see case MULFEMM(b) in Table 11). 



MOVING FEM FOR POPULATION BALANCE EQUATION 765 

Table 11. Comparison of different numerical schemes with analytical solution for case 2 at time level of 2.5 s. Conden- 
sation coefficients a ,  = a z =  10-'ogzi3 s - ' ;  initial mean diameter 0.1 pm 

~ 

Grid 
spacing Time Peak location Peak 11 E 11 x 10' M ,  x M ,  x lo8 

AJ step ( s )  J 1  5 2  value x (cm-7 ( g ~ r n - ~ )  

MULFEMM(a) 0.5 0.01 14.951 14.951 319.5 3.45 7-726 6.1 7 I 

MULFEM M (b) 0.25 0.01 14.913 14.913 362.1 1.13 8.236 6.574 

Smolarkiewicz 0.5 0.002 14500 14.500 6.3 14.51 8.823 6.786 

Upwind differencing 0.5 04332 15.000 15.000 2.9 48.18 8.823 7.464 

Analytical solution 14.913 14.913 411.4 8.823 7,153 

(0.247 pm) 

(0.245 pm) 

(0.223 pm) 

(0.250 pm) 

(0.245 pm) 

Table 111. Comparison ofdifferent numerical schemes with analytical solution for case 3 at time level of 5 s. Condensation 
coefficients a ,  = gZl3 s-', a ,  = 10-l' g 2 I 3  s -'. , initial ' . ' mean diameter 0.1 pm 

~ 

Grid 
spacing Time Peak location Peak / /  E 1)  x 10' M ,  x MI x lo8 

A J  level (s) J1 5 2  value x lo-' (cm-7 (g ~ m - ~ )  

MULFEMM 0.25 0.02 11.004 15,873 499.2 1.41 8.851 7.049 

Smolarkiew icz 0.5 0.002 11.000 15.500 49.4 23.29 8,823 6.828 
(0.246 pm) 

(0253 pm) 

(0.253 pm) 

(0.246 pm) 

Upwind differencing 0 5  0.002 11QOO 16.000 31.2 23.82 8.823 7.557 

Analytical solution 11.004 15.873 501.6 8.823 7.103 

Case 3.  Gowth process with unequal condensation rates 

The initial size distribution is the same as that of case 2. However, the condensation efficients 
are four orders of magnitude different: a ,  = 10-'4g2i3 s- '  , a2 = lo-'' g213 s-'. The Courant 
number stability criterion is the same as that for case 2. Table I11 shows that MULFEMM, using 
a smaller initial grid spacing and ten times larger time step, produces excellent results. Figure 5 
shows that as the growth process continues, the size distribution becoming a thin slice moving in 
the J2-direction, MULFEMM can reproduce the analytical solution very well whereas the 
Smolarkiewicz method and the upwind-differencing method still create a cone-shaped size 
distribution indicating excessive numerical diffusion. Table I11 shows that there is significant 
improvement in the peak value and the error function for the Smolarkiewicz and the upwind- 
differencing methods as compared with the results for equal condensation rates shown in 
Table 11. This is due to the fact that case 3 is a growth process essentially dominated by the 
second component. 

Case 4 .  Growth of dioctyl phthalate (DOP) and dibutyl phthalate (DBP)  system 

Having validated the moving finite element method (MULFEMM) with analytical solutions, 
we compare different numerical results for this realistic aerosol system for which no analytical 
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Figure 5. Comparison of (a) analytical solution, (b) MULFEMM, (c) Smolarkiewicz method and (d) upwind-differen- 
cing method for case 3, which is a fast growth process with four orders of magnitude difference in condensation rates 

solution is available. The initial size distribution is the same as that of case 3. The mean free paths 
of DOP and DBP are assumed to be 6.5 x lo-' cm. The surface tension of the solution droplet is 
25 dyn cm-' .  The molecular weight and the vapour pressure of DOP and DBP are 390, 278 
and 5 x mmHg respectively. The 3D plots are viewed from the north-east corner. 
The system temperature is 50 "C and the saturation ratio of each component is maintained at 2.0. 
In this case study the Kelvin effect and the Fuchs interpolation (formula (i.e. equations (4) and (5)) 

5 x 
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Figure 6 .  Comparison of (a) MULFEMM, (b) Smolarkiewicz method and (c) upwind-differencing method for case 4, 
the DOP/DBP system 
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are included, Figure 6 shows that MULFEMM provides reliable numerical result whereas the 
Smolarkiewicz and the upwind-differencing methods create intolerable numerical diffusion. The 
peak values of the size distribution are 7.51 x lo’, 5.1 x lo6 and 2.7 x lo6 for MULFEMM, 
Smolarkiewicz and upwind differencing respectively. Furthermore, there is a significant difference 
in size distribution, as expected. In these studies the latent heat released by condensation has not 
been included in the simulations. This is valid for DOP/DBP systems since the heat of 
vaporization and the mass transfer rates are very small. For volatile compounds, Tsang et 
showed that the latent heat effect can be incorporated into the growth rate in equation (4). 
Furthermore, the generalized Stefan-Maxwell equation can be used instead of the Maxwell 
equation (2). 

In the derivation of equation (17) we assumed that each element in the 3 1-32 plane is treated as 
a rectangle rather than a quadrilateral. Case 2 represents the most severe test on the simplification 
of the Jacobian because the points are moved rapidly to the diagonal and the elements are much 
distorted from rectangles. For example, the first element in Figure 4(b) has the following ( J  1,52) 
co-ordinates (14.6773, 14.6773), (14.6879, 14.6939), (14-6922, 14.6864) and (14.7019, 14.7019). 
Obviously, the element is much deviated from a rectangle. On the other hand, in case 3, where the 
condensation rate of the second component is 10000 times higher than that of the first 
component, we expect the elements will remain closer to rectangular shape since the grid points 
move very slowly in the J 1-direction. The co-ordinates of the first element in Figure 5(b) are as 
follows: (7.7837, I5.6410), (7.7838, 15.6467), (8.0285, 15.6455) and (8.0286, 15.6510). For case 2, 
even after the size distribution becomes practically monodisperse at 10 s, MULFEMM still 
provides satisfactory results. This implies that it is more important to locate the grid points to 
where they are needed most than to evaluate the Jacobian rigorously. 

The banded matrix problem in equation (22) is solved by the MA28 sparse matrix codeZZ in 
NAGLIB. We have also obtained excellent preliminary results for ternary systems. For case 2, 
MA28 requires arrays of 12pu + 15u elements, where p is the number of diagonals in equation (22) 
( p  = 5 for binary systems) and u is the number of unknowns. Finally, it should be pointed out that 
the success of MULFEMM is due to the fact that the grids are moved to where high resolution is 
needed. In principle, finite difference schemes with moving grid methods may also be used to 
model these particle growth problems, as evidenced by the recent work of Thomaidis et uL2j on 
one-dimensional convection-dominated diffusion problems. For large-scale problems, use of the 
incomplete block factorization methodZ4 is under way. 

CONCLUSIONS 

We have presented an extension to the multidimensional case of the moving finite element 
method for the one-dimensional time-dependent convective transport and particle growth 
problems introduced in References 1 1  and 12 

The method can be used for multicomponent particle growth processes. We have restricted 
ourselves to binary systems, although we have obtained excellent preliminary results for ternary 
systems. Comparisons with the positive definite methods of Smolarkiewicz and upwind dif- 
ferencing show that the moving finite element method is a reliable numerical technique whch can 
provide accurate results for a wide range of particle growth parameters. 
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